Preliminary communication

MERCURY-MERCURY SPIN-SPIN COUPLING IN AN ORGANOMERCURY COMPOUND

G.B. DEACON, G.N. STRETTON,

Chemistry Department, Monash University, Clayton, Victoria 3168 (Australia) and M.J. O'CONNOR

Department of Chemistry, La Trobe University, Bundoora, Victoria 3083 (Australia) (Received August 30th, 1984)

Summary

The ¹⁹⁹Hg NMR spectrum of 2-methoxy-1-nitro-3,5-bis(trifluoroacetatomercurio)benzene, prepared by mercuration of 1-methoxy-2-nitrobenzene with mercuric trifluoroacetate in trifluoroacetic acid, shows an AB system attributable to ¹⁹⁹Hg¹⁹⁹Hg coupling with ⁴ $J(^{199}$ Hg¹⁹⁹Hg) 2163 Hz.

Although spin—spin coupling is well established between ¹⁹⁹Hg (spin $I = \frac{1}{2}$) and isotopes of other Main Group elements with spin $I = \frac{1}{2}$, e.g. ²⁹Si [1], ^{117,119}Sn [2], the first example of ¹⁹⁹Hg¹⁹⁹Hg coupling has only recently been observed, viz. for the compound Hg₃ (AsF₆)₂ in liquid sulfur dioxide [3]. The coupling was observed as the inner two lines of an AB system (the outer lines being too weak for observation) for which ¹J(¹⁹⁹Hg¹⁹⁹Hg) was calculated to be ca. 140 000 Hz [3]. The assignment was confirmed by measurements at two different field strengths. We now report the first example of ¹⁹⁹Hg¹⁹⁹Hg coupling in an organomercury compound with observation of a complete AB system.

Reaction of mercuric trifluoroacetate with 1-methoxy-2-nitrobenzene (mol ratio 2/1) in refluxing trifluoroacetic acid for 2 h yielded a yellow precipitate of 1-methoxy-2-nitro-4-trifluoroacetatomercuriobenzene (36%). The filtrate was heated under reflux for a further 8 h giving a yellow precipitate of 2-methoxy-1-nitro-3,5-bis(trifluoroacetatomercurio)benzene, 1 (16%), which was analytically pure with a ¹H NMR spectrum [(CD₃)₂SO]: 7.84, d, with satellites ³J(¹⁹⁹HgH) 233 Hz, 1H, H(6); 7.73, d. with satellites ³J(¹⁹⁹HgH) 229 Hz, 209 Hz, 1H, H(4); 3.91, s, 3H, OMe.

The proton-decoupled ¹⁹⁹Hg NMR spectrum of 1 in $(CD_3)_2SO$ is shown in Fig. 1. The major peaks are attributable to molecules with only one ¹⁹⁹Hg atom $(\delta (A) Hg(3); \delta (B) Hg(5))$, and $\nu_1, \nu_2, \nu_3, \nu_4$ are an AB system from molecules in which both mercury atoms are ¹⁹⁹Hg isotopes. The ¹⁹⁹Hg¹⁹⁹Hg coupling constants (below) are of similar magnitude to the chemical shift difference between δ (A) and δ (B), thus second order effects give a highly distorted AB pattern. From the spectrum with a JEOL FX200 instrument, an observed value of ⁴J(¹⁹⁹Hg¹⁹⁹Hg) 2163 Hz was obtained compared with a calculated value (δ (A), δ (B), ν_3 , ν_2 determined from the experimental; ν_1 , ν_4 values by δ (A) – δ (B) = $\sqrt{(\nu_4 - \nu_1)(\nu_3 - \nu_2)}$

[7] with $J = \frac{\nu_1 - \nu_4}{2} - \frac{\nu_2 - \nu_3}{2}$) of 2110 Hz. Confirmation of mercury-mercury

coupling was provided by relative changes in the chemical shifts of ν_2 and ν_3 when the spectrum was recorded with a JEOL FX100 spectrometer. In this case, no lines due to ν_1 and ν_4 were observed, but values calculated as above give ${}^{4}J({}^{199}\text{Hg}{}^{199}\text{Hg})$ 2155 Hz in good agreement with the observed value (JEOL FX200).

A programme of synthesis of other unsymmetrically disubstituted benzenes is underway in particular to establish values of ${}^{3}J({}^{199}\text{Hg}{}^{199}\text{Hg})$ and ${}^{5}J({}^{199}\text{Hg}{}^{199}\text{Hg})$. The present ${}^{4}J({}^{199}\text{Hg}{}^{199}\text{Hg})$ coupling is expectedly considerably smaller than the reported ${}^{1}J({}^{199}\text{Hg}{}^{199}\text{Hg})$ coupling [3].

Fig. 1. Proton decoupled ¹⁹⁹Hg NMR spectrum of 1 at 35.64 MHz referenced to neat $(CH_3)_2$ Hg. The above spectrum was recorded with an internal d_6 dimethylsulphoxide lock on the sample which was spun. The spectral width was 20 kHz. A delay time of 50 μ s caused the rolling baseline, however longer delay times made accurate phasing of the spectrum impossible. Chemical shift values were measured relative to 1 M phenylmercuric acetate in dimethylsulphoxide [4], the sample replacement method being used. Subtraction of 1437 ppm gives a value referenced to neat dimethylmercury [5]. The poorly phased signal at ca. -1560 ppm is an impurity due to 1-methoxy-2-nitro-3,4-bis(trifluoroacetatomercurio)benzene where the two Hg atoms have coincident chemical shifts. The identity of the species which gives rise to the small resonance at ca. -1330 ppm has not yet been established [6].

Acknowledgement. We are grateful to Dr. D.P. Kelly, University of Melbourne, for measurements with the JEOL FX100 instrument, and for the award of a Commonwealth Scholarship to G.N.S.

References

- 1 M.J. Albright, T.F. Schaaf, A.K. Hovland and J.P. Oliver, J. Organomet. Chem., 259 (1983) 37.
- 2 Yu.K. Grishin, V.A. Roznyatovskii, Yu.A. Ustynyuk, M.N. Bochkarev, G.S. Kalinina and G.A. Razuvaev, Izv. Akad. Nauk. SSR Ser. Khim., (1980) 2190.
- 3 R.J. Gillespie, P. Granger, K.R. Morgan and G.J. Schrobilgen, Inorg. Chem., 23 (1984) 887.
- 4 R. Colton and D. Dakternieks, Aust. J. Chem., 33 (1980) 955.
- 5 M.A. Sens, N.K. Wilson, P.D. Ellis and J.D. Odom, J. Magn. Res., 19 (1975) 323.
- 6 Investigations in progress.
- 7 D.H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, 2nd Ed., McGraw-Hill, London, 1973, p. 94-99.